Search results for " 0805 Distributed Computing"

showing 1 items of 1 documents

Quadratically Tight Relations for Randomized Query Complexity

2020

In this work we investigate the problem of quadratically tightly approximating the randomized query complexity of Boolean functions R(f). The certificate complexity C(f) is such a complexity measure for the zero-error randomized query complexity R0(f): C(f) ≤R0(f) ≤C(f)2. In the first part of the paper we introduce a new complexity measure, expectational certificate complexity EC(f), which is also a quadratically tight bound on R0(f): EC(f) ≤R0(f) = O(EC(f)2). For R(f), we prove that EC2/3 ≤R(f). We then prove that EC(f) ≤C(f) ≤EC(f)2 and show that there is a quadratic separation between the two, thus EC(f) gives a tighter upper bound for R0(f). The measure is also related to the fractional…

Quadratic growth[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]0209 industrial biotechnology0102 computer and information sciences02 engineering and technologyMeasure (mathematics)Upper and lower bounds01 natural sciencesACM: F.: Theory of ComputationSquare (algebra)Computation Theory & MathematicsTheoretical Computer ScienceCombinatoricsQuadratic equation020901 industrial engineering & automationComputational Theory and Mathematics010201 computation theory & mathematicsTheory of computationInformation complexity[INFO]Computer Science [cs]0102 Applied Mathematics 0802 Computation Theory and Mathematics 0805 Distributed ComputingCommunication complexityBoolean functionComputingMilieux_MISCELLANEOUSMathematics
researchProduct